/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file usart.c * @brief This file provides code for the configuration * of the USART instances. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "usart.h" /* USER CODE BEGIN 0 */ #include #define RING_BUFFER_SIZE 1500 #define UART_RX_BUF_SIZE 128 typedef struct { uint8_t data[RING_BUFFER_SIZE]; uint16_t tail; uint16_t head; } ringbuffer_t; ringbuffer_t UART_RxData; uint8_t UART1_RxByte; // For single-byte interrupt reception uint8_t UART1_RxBuffer[UART_RX_BUF_SIZE]; // Circular or linear buffer volatile uint16_t uart1_rx_index = 0; volatile bool uart1_msg_ready = false; /* USER CODE END 0 */ UART_HandleTypeDef hlpuart1; UART_HandleTypeDef huart1; /* LPUART1 init function */ void MX_LPUART1_UART_Init(void) { /* USER CODE BEGIN LPUART1_Init 0 */ /* USER CODE END LPUART1_Init 0 */ /* USER CODE BEGIN LPUART1_Init 1 */ /* USER CODE END LPUART1_Init 1 */ hlpuart1.Instance = LPUART1; hlpuart1.Init.BaudRate = 115200; hlpuart1.Init.WordLength = UART_WORDLENGTH_8B; hlpuart1.Init.StopBits = UART_STOPBITS_1; hlpuart1.Init.Parity = UART_PARITY_NONE; hlpuart1.Init.Mode = UART_MODE_TX_RX; hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; hlpuart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; hlpuart1.FifoMode = UART_FIFOMODE_DISABLE; if (HAL_UART_Init(&hlpuart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&hlpuart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&hlpuart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&hlpuart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN LPUART1_Init 2 */ /* USER CODE END LPUART1_Init 2 */ } /* USART1 init function */ void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ UART_RxData.head = 0; UART_RxData.tail = 0; HAL_UART_Receive_IT(&huart1, (uint8_t*)&UART_RxData.data[UART_RxData.tail], 1); // /* USER CODE END USART1_Init 2 */ } void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; if(uartHandle->Instance==LPUART1) { /* USER CODE BEGIN LPUART1_MspInit 0 */ /* USER CODE END LPUART1_MspInit 0 */ /** Initializes the peripherals clock */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_LPUART1; PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK7; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /* LPUART1 clock enable */ __HAL_RCC_LPUART1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**LPUART1 GPIO Configuration PB11 ------> LPUART1_TX PA10 ------> LPUART1_RX */ GPIO_InitStruct.Pin = DEBUG_TX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF8_LPUART1; HAL_GPIO_Init(DEBUG_TX_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = DEBUG_RX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF8_LPUART1; HAL_GPIO_Init(DEBUG_RX_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN LPUART1_MspInit 1 */ /* USER CODE END LPUART1_MspInit 1 */ } else if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspInit 0 */ /* USER CODE END USART1_MspInit 0 */ /** Initializes the peripherals clock */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /* USART1 clock enable */ __HAL_RCC_USART1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**USART1 GPIO Configuration PB12 ------> USART1_TX PA8 ------> USART1_RX */ GPIO_InitStruct.Pin = LTE_TX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF7_USART1; HAL_GPIO_Init(LTE_TX_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = LTE_RX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF7_USART1; HAL_GPIO_Init(LTE_RX_GPIO_Port, &GPIO_InitStruct); /* USART1 interrupt Init */ HAL_NVIC_SetPriority(USART1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspInit 1 */ /* USER CODE END USART1_MspInit 1 */ } } void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle) { if(uartHandle->Instance==LPUART1) { /* USER CODE BEGIN LPUART1_MspDeInit 0 */ /* USER CODE END LPUART1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_LPUART1_CLK_DISABLE(); /**LPUART1 GPIO Configuration PB11 ------> LPUART1_TX PA10 ------> LPUART1_RX */ HAL_GPIO_DeInit(DEBUG_TX_GPIO_Port, DEBUG_TX_Pin); HAL_GPIO_DeInit(DEBUG_RX_GPIO_Port, DEBUG_RX_Pin); /* USER CODE BEGIN LPUART1_MspDeInit 1 */ /* USER CODE END LPUART1_MspDeInit 1 */ } else if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspDeInit 0 */ /* USER CODE END USART1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART1_CLK_DISABLE(); /**USART1 GPIO Configuration PB12 ------> USART1_TX PA8 ------> USART1_RX */ HAL_GPIO_DeInit(LTE_TX_GPIO_Port, LTE_TX_Pin); HAL_GPIO_DeInit(LTE_RX_GPIO_Port, LTE_RX_Pin); /* USART1 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspDeInit 1 */ /* USER CODE END USART1_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ int8_t LTE_UART_SetBaudrate(uint32_t baudrate) { HAL_UART_DeInit(&huart1); huart1.Init.BaudRate = baudrate; if (HAL_UART_Init(&huart1) != HAL_OK) { return -1; } UART_RxData.head = 0; UART_RxData.tail = 0; // HAL_UART_Receive_IT(&huart1, (uint8_t *)&UART_RxData.data[UART_RxData.tail], 1); return 0; } void LTE_UART_FlushBuffer(void) { memset(UART_RxData.data, 0, RING_BUFFER_SIZE); UART_RxData.head = 0; UART_RxData.tail = 0; } int16_t LTE_UART_SendData(uint8_t *pData, uint16_t length) { if(HAL_UART_Transmit(&huart1, (uint8_t*)pData, length, HAL_MAX_DELAY) != HAL_OK) { return -1; } return 0; } int16_t LTE_UART_ReceiveSingleData(uint8_t *pSingleData) { if (UART_RxData.head != UART_RxData.tail) { *pSingleData = UART_RxData.data[UART_RxData.head++]; if (UART_RxData.head >= RING_BUFFER_SIZE) { UART_RxData.head = 0; } } else { return -1; } return 0; } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (++UART_RxData.tail >= RING_BUFFER_SIZE) { UART_RxData.tail = 0; } HAL_UART_Receive_IT(huart, (uint8_t*) &UART_RxData.data[UART_RxData.tail], 1); } #pragma module_name = "?__write" size_t __write(int handle, const unsigned char *buffer, size_t size) { if (handle != _LLIO_STDOUT && handle != _LLIO_STDERR) return _LLIO_ERROR; for (size_t i = 0; i < size; ++i) { HAL_UART_Transmit(&hlpuart1, (uint8_t *)&buffer[i], 1, HAL_MAX_DELAY); } return size; } void LTE_SendATCommand_Test(const char *cmd) { HAL_UART_Transmit(&huart1, (uint8_t *)cmd, strlen(cmd), 1000); } /* For Testing Purposes ONLY */ void LTE_ATSendCommand(const char *cmd, int timeout) { // const char *cmd = "AT\r\n"; uint8_t rx_byte; uint8_t rx_buff[100] = {0}; int idx = 0; uint32_t startTick; // Transmit AT Command if (HAL_UART_Transmit(&huart1, (uint8_t *)cmd, strlen(cmd), 1000) != HAL_OK) { APP_ERROR_MSG("UART TX Failed\r\n"); return; } // Wait and read each byte until timeout or buffer full startTick = HAL_GetTick(); while ((HAL_GetTick() - startTick) < timeout && idx < sizeof(rx_buff) - 1) { if (HAL_UART_Receive(&huart1, &rx_byte, 1, 10) == HAL_OK) { rx_buff[idx++] = rx_byte; // Reset timeout if still receiving startTick = HAL_GetTick(); } } rx_buff[idx] = '\0'; // Null-terminate the received string APP_LTE_MSG(" %s\r\n", rx_buff); } /* USER CODE END 1 */